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A new rolling contact tribometer based on a planar thrust

bearing geometry is described. The bearing “races” are flat

plates that drive a ball into a near-circular, spiral path. The spi-

raling ball is returned to its initial radius each revolution around

the race by a “guide plate” backed by a force transducer. The

motions of the ball are analyzed and the force exerted by the ball

on the guide plate is related to the friction coefficient of the sys-

tem. The experimental characteristics of the system are presented

and the system is shown to exhibit the behavior expected for a tri-

bometer.
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INTRODUCTION

Practical mechanical devices with moving parts generally
require attention to their tribological properties – those parts of the
mechanism that involve friction and wear and therefore usually
require lubrication. Ball bearings are one of these devices and

attention is given to the lubrication of the balls rolling in the races.
Testing new lubricants and materials of construction for bearings
is often done on the bearings themselves and even under the con-
ditions and in the machine in which the bearing is to be incorpo-
rated. Such testing, while enjoying maximum credibility, can be
very time-consuming and even impractical for operations intend-
ed to extend for many years. 

In order to avoid the expense and time of full scale testing,
instruments have been introduced that simplify and extract what is
considered to be a crucial aspect of rolling bearing operation.
Many of these “tribometers” are used to evaluate lubricants and
bearing materials in abbreviated time and at smaller expense.
Most of these instruments operate by sliding one element on
another, with repeated passes over the same track, either circular
or a short straight line. Direct application of the results to ball
bearings is often questionable because some crucial aspect of the
bearings operation, such as rolling, is lacking in these tribometers. 

This report describes a new type of tribometer to test lubricants
and materials in which the correspondence to the usual ball bear-
ing motions is both close and evident. The elements of the tri-
bometer– essentially a retainerless thrust bearing with one ball
and flat races – is depicted in Fig.1. A ball, under load, is driven
by the rotating plate into an orbit that is nearly circular. The orbit
is, in fact, an opening spiral. At the end of an orbit the rolling ball
contacts the “guide plate” and is guided back to the starting point

NOMENCLATURE

h = spiral pitch
Fpg = force on the guide plate, normal to its face
F1 = force on the ball at the contact with the rotating plate, 

normal to the guide plate’s face. Considered here as the 
friction force

F2 = force on the ball at the contact with the fixed plate, normal 
to the guide plate’s face

P = Pivot, relative angular velocity between the ball and a plate

r = radius vector from ball’s center to a point on its surface
R = distance of ball’s center from axis of rotating plate
v = velocity of a point on the ball’s surface
vr = velocity of the point of contact between the ball and the 

rotating plate
vc = velocity of the ball’s center
V = velocity of a point on the rotating plate’s surface
ω = angular  velocity of the ball with respect to its center
Ωp = angular velocity of the rotating plate
Ωo = angular velocity of the ball’s center about the axis of the 

rotating plate
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of the spiral, which then repeats. A force transducer attached to the
guide plate senses the force developed during the guide plate’s
contact with the ball (termed the scrub, S) and it is this force that
will be shown to be related to the friction force between the ball
and the two large flat plates (races). The three plates, the ball and
the force transducer are the elements of this Spiral Orbit
Tribometer (SOT). 

The authors kinematic analysis is first order, meaning that all
elastic effects inside all Hertzian contacts are ignored. The single
assumption of  “roll without slip” then gives the kinematic rela-
tions between spin and orbit angular velocities outside the scrub
(95% of an orbit). To first order inside the scrub the ball also rolls
without slip on the fixed and guide plates, but, as will be shown,
plain slip must occur between the ball and the rotating plate. This
slip is completely independent of any elastic effects. It is radially
inward on the rotating plate, and the force to produce it is meas-
ured by the force transducer behind the guide plate. It is this
measurement that allows the friction coefficient to be determined
by the SOT.

The spiral orbit is an essential feature of this tribometer. It is
caused by pivot(spin)-induced tangential stresses within the
Hertzian contacts between the ball and the plates, a second order
effect called creep or micro-slip. Local displacements within the
Hertzian contacts consist of elastic strain (stick) if the local tan-
gential stress is less than the friction coefficient times the local
normal pressure, and slip if it is greater. These micro-displace-
ments integrate to give the lateral macro-displacements of the spi-
ral. Johnson (3), gives an encyclopedic account of micro-slip,
including an account of the spiral. He notes, page 263, that  “The
difficulty of problems involving micro-slip lies in the different
boundary conditions which have to be satisfied for the stick and
slip zones [within a Hertzian contact] when the configuration of
these zones is not known in advance.” The spiral was first men-
tioned by Palmgren (8) and subsequently analyzed by Johnson (1),
(2) and by Kalker (4). The SOT spiral geometry without the force
transducer was used by Kingsbury (7) to study lubricant degrada-
tion and the formation of friction polymer under boundary lubri-
cated rolling conditions. 

No attempt is made here to extend the analysis of the spiral.
Instead it is simply accepted as a characteristic of the ball’s motion
and used as such in the operation of the tribometer. The pitch of
the spiral turns out to be small enough - under an extremely wide
range of conditions - to allow the ball to reach the guide plate’s
face without falling out or jamming against the side of the guide
plate.  The spiral has always been present in the many versions of
this device that have been constructed and it has been found to be
an exceedingly robust phenomenon on which the operation of the
tribometer can depend.

The motions of the ball are analyzed in Section II. The analy-
sis explains how the coefficient of friction is obtained from the
force experienced by the guide plate, thus earning the name “tri-
bometer” for this device. The experimental behavior of the tri-
bometer and observations that support rather general aspects of
the analysis are given in Section III. Some attention is also given
to the correspondence between the present experimental results
and the analysis and earlier experimental observations of Johnson
(1) with three symmetrically spaced balls, instead of the single
ball used in the present configuration.

ANALYSIS

The purpose of the analysis is to understand the motion of the
ball, both in and out of the scrub, and the means by which this
instrument measures the coefficient of friction. To do so requires
obtaining expressions for the angular velocity of the ball in both
regions. This analysis indicates the locus of slip between the ball
and plates and ultimately indicates the relationship between the
coefficient of friction and the force experienced by the guide
plate. The analysis is based on roll without slip between rigid bod-
ies, which means that there is no relative linear velocity at the
ball-plate contact. The reason for this requirement is that rolling
friction is an order of magnitude smaller than sliding friction, even
for the most favorable boundary lubricated conditions. The condi-
tion of roll without slip can be satisfied at all contacts in the sys-
tem except for the contact of the ball on the rotating plate in the
scrub region - this contact exhibits gross sliding. The spiral itself
is not treated explicitly in the following analysis because those
aspects of the ball’s motion that lead to the device’s operation as
a tribometer can be understood without doing so. The analysis will
first treat the motion outside the scrub followed by the motion in
the scrub. 

Outside the Scrub

The following analysis is so elementary that the results are
often quoted without proof (1). The value of the detail shown here
is that it provides the framework for the analysis of the motion in
the scrub. The goal here is to obtain an expression for the ball’s
angular velocity.

The velocity of a point on the ball’s surface, v(r), is given by

v(r) = vc + ωxr [1]  

where r is the radius vector from the ball’s center to any point on
its surface, ω is the angular velocity of the ball and vc is the veloc-

Fig. 1—Essential elements of the Spiral Orbit Tribometer. S denotes the
scrub - that portion of the track made by the ball contacting the
guide plate.
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ity of the ball’s center. Boldface denotes vectors. If rb is the radius
vector from the ball center to the rotating plate contact, the veloc-
ity of the ball at this contact, vr, is 

vr = vc + ωxrb [2]  

If V is the velocity vector of the rotating plate at the point of
contact, roll without slip requires V = vr , so:

V = vc + ωxrb [3]  

For the contact at the fixed plate, r = -rb, and roll without slip
requires

0 = vc - ωxrb [4]  

Adding Eqs. [3] and [4] yields

vc = V2 [5]  

This vector relation indicates that the ball is driven in the direc-
tion of the rotating plate velocity vector at the contact. The rotat-
ing plate drives the ball in a circular orbit, a consequence of roll
without slip. Also, ΩO, the orbital angular velocity of the ball cen-
ter, and Ωp, the plate rotation rate, are related as

Ωo = Ωo

2 [6]

The ball center orbit rate is thus half the rotating plate’s rota-
tion rate. This relationship is independent of the ball radius rb and
the radius of the (nearly) circular track, R. 

The angular velocity of the ball, ω, can now be determined by
referring to Fig. 2. First, subtracting Eq. [4] from Eq. [3] yields     

V = 2ωxrb [7]  

By choosing different directions of the vector rb, Eq. [7] can be
used to determine the components of the vector ω. With the ball in
the position shown and rb=rbk, V=ΩpRi, and ω=ωIi+ωjj+ωkk,
substituting into Eq. [7] yields

ΩpRi = 2rb( -wij + ωji )                             [8]  

So that the relations on rolling balls found in elementary texts
are 

ωI=0      and     ωj = ΩpR
2rb

[9]

To find the third component of ω, let r=rbj, the point on the ball
furthest from the k axis. The velocity of this point must be
Ωo(R+rb) in the i direction. Then using Eq. [1],

Ωo(R+rb)i = ΩoRi + (ωjj + ωkk) x rbj                     [10]

which leads to

ωk = -Ωo = -Ωp/2                                        [11]  

The complete angular velocity vector of the ball at the position
shown is thus

ω = ΩpR
2rb

j− Ωp

2 k [12]  

The ball thus undergoes one complete rotation about its own
vertical axis for each circular orbit so that the locus of points of
contact on its surface is a great circle. Two means by which the
rest of the ball’s surface – and any lubricant there – can be brought
into contact are described below.

The difference between the k component of the ball’s angular
velocity and the angular velocity of the contacting plate - their rel-
ative angular velocity – is referred to here as pivot and as spin by
Johnson (1). For the contact at the rotating plate,

Pr = −Ωp

2 k [13a]

And for the contact at the fixed plate,

Pf = +Ωp

2 k [13b]  

The significance of pivot is that it gives rise to sliding and fric-
tionally-induced energy loss within the Hertzian contact area of
elastic bodies under load. This energy dissipation within the piv-
oting contact can be considered a driving force for the degradation
of liquid lubricants. Note that pivot and its associated energy loss
are absent for a ball rolling in a straight line, even for elastic mate-
rials with non-zero Hertzian contact area.

The kinematics of the retainerless thrust bearing described
here and an angular contact bearing are related in that both exhib-
it pivot (5), (6). The sum of the absolute pivots for the thrust bear-
ing is Ωp and it has a contact angle of π/2. According to first order
kinematic formulas for angular contact bearings, the sum of the
absolute pivots for any bearing in any rotational mode is its total
speed times the sine of the contact angle. This relationship also
holds for this thrust bearing and establishes its connection to those
bearings with curved surfaces that also exhibit pivot.

Referring to Fig.2, the spiral can be described as the result of
a nonzero i-component of ω. This component moves the locus of
contact on the ball off the great circle it would have if the orbit
was a perfect circle and instead generates a spiral on the ball as it
rolls in its spiral orbit. This has the beneficial effect of continu-
ously bringing new lubricant into the contacts from parts of the
ball other than the great circle associated with a perfectly circular
orbit. Another way that the ball’s entire surface is exercised will
be indicated in the following discussion of motion in the scrub.

In The Scrub

The ball now has three simultaneous contacts: rotating plate,
fixed plate and guide plate. The analysis seeks the ball’s linear
velocity, vc, and angular velocity, ω, subject to the requirement
that there be roll without slip if possible. In Fig. 3, the scrub is
depicted as it appears on the fixed plate where the angle included
by the scrub is denoted by θmax. The linear velocity of  the ball’s
center is denoted by |vc(θ)|i, where the θ-dependence indicates
that |vc|may vary within the scrub. Now let ω = ωIi + ωjj + ωkk
and treat the contact with the bottom plate, r = -rbk. The velocity
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at this point must be zero for roll without slip, so using Eq. [1],

0 = |vc(θ)|i + ωx(-rbk) = [|vc(θ)|-rbωj]i + rbwIj       [14]

Therefore

ωI = 0       and         ωj = |vc(θ)|
rb

[15]  

and roll without slip is possible at this contact. For the contact
with the guide plate, r = rbj, and roll without slip demands that

0 = |vc(θ)|i + [ {|vc(θ)|/rb}j + ωkk] x rbj = [|vc(θ)| - ωkrb]i    [16]

So that

ωk = |vc(θ)|
rb

[17]  

The ball rolls without slip simultaneously on the fixed plate
and on the guide plate. The complete angular velocity vector for
the ball in the scrub is

ω = |vc(θ)|
rb

(j + k) [18]

Now |vc(θ)| is determined by considering the contact at the
rotating plate, r = rbk. From Fig. 3, the velocity of the rotating
plate at the contact is

V = ΩpRo

cos(θ) [cos(θ)i + sin(θ)j] = ΩpRo[i + tan(θ)j] [19]

The velocity of the ball surface at this contact is

v = |vc(θ)|i + |vc(θ)|
rb

(j + k)xrbk = 2|vc(θ)|i [20]  

The relative velocity at this contact is then

∆V ≡ V – v =[ΩpRo - 2|vc(θ)|]i + ΩpRotan(θ)j            [21]

Roll without slip is possible for the i-component of relative
velocity if 

|vc(θ)| = ΩpRo

2 [22]  

which determines the velocity of the ball center in the scrub as
being independent of its position in the scrub and the same as the
velocity outside the scrub. The complete angular velocity vector
of the ball in the scrub can now be written as

ω = ΩpRo

2rb
(j + k) [23]

Although the i-component of relative velocity at the rotating
plate contact can be zero, the j-component is not zero. There is
slip at this contact with a relative sliding velocity normal to the
guide plate of

∆V = ΩpRotan(θ)j                                [24]  

This gross slip (that is to say slip over the whole of the
Hertzian contact area between the ball and the rotating plate)
occurs only by the ball in the scrub sliding on the rotating plate,
with the direction of the slip normal to the guide plate. The slip
velocity depends on the ball’s position in the scrub via the depend-
ence of ∆V on θ.

This slip at the ball – rotating plate interface generates a fric-
tion force that must in turn generate a reaction force on the guide
plate and also possibly on the fixed plate. In order to understand
these friction and reaction forces and to see how the guide plate
force can yield a coefficient of friction, refer to Fig. 4, where the
lateral forces on the ball are depicted. The friction force of the
rotating plate sliding on the ball in the scrub is denoted as F1, the
reaction force of the guide plate is denoted as Fgp, and F2 is the
force included to accommodate the possibility that there is a lat-
eral force on the ball at the contact with the fixed plate. The rela-
tionship between these forces is determined by the requirement
that the sum of these lateral forces is zero and that the sum of their

Fig. 2—Coordinate system used to analyze ball motion our of the scrub
region.

Fig. 3—Ball path and coordinate system on fixed plate around scrub
region.
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moments is zero. Summing the moments around the ball center
yields

F1rb = F2rb ⇒ F1 = F2 [25a]  

Summing the lateral forces yields 

Fgp = F1+F2 = 2F1 [25b]  

There are two consequences of Eqs. [25]. (1) The guide plate
force is twice the friction force at the sliding contact with the
rotating plate. This establishes the ability of this thrust bearing
device to measure the friction force by the transducer on which the
guide plate is mounted and the coefficient of friction (CoF) by
dividing this friction  force by the load:                                        

CoF = Fgp

2×load [26]  

The friction is measured only during ~ 5% of the orbit tra-
versed by the ball. (2) There is a lateral force on the ball at the
contact with the fixed plate and an associated reaction force on the
fixed plate itself, trying to push the fixed plate away from the
guide plate. Experimental confirmation of this force on the fixed
plate, normal to the guide plate, will be indicated in Section III.
There may also be forces on all the elements that are tangential to
the guide plate’s face, i.e. in the i - direction. However, the force
transducer only senses forces in the j-direction, so that forces tan-
gential to the guide plate’s face are not considered further here.

The expressions for the pivot at the three contacts of the ball in
the scrub can be obtained from Eq. [23]. For the contact with the
fixed plate,

Pf = −ΩpRo

2rb
k [27a]  

For the guide plate contact,

Pgp = −ΩpRo

2rb
j [27b]

For the contact with the rotating plate,

Pr = −Ωp(1 + Ro

2rb
)k [27c]

The values of these pivots are greater than those outside the
scrub (Eqs. [13]) by a factor Ro/rb (≈4 in the experimental system
to be described below). These relative angular velocities cause
interfacial slip in the elastic contact areas in the same way as that
for the ball moving outside the scrub and have experimentally
observable consequences as discussed in Sec. III.

The analysis shows that the k component of angular velocity,
due to the ball rolling on the guide plate, rotates the ball off the
spiral of contact it had upon entering the scrub and thus generates
new spirals of contact on the ball each time it passes through the
scrub. This allows the entire surface of the ball to eventually be
brought into contact with the plates and its associated lubricant to
be stressed. This motion is different from that of the usual ball-on-
flat sliding configuration in which the same spot on the ball is con-
tinuously slid upon, generating a flat wear scar. No such wear scar
on the ball is developed by this spiral orbit tribometer. Thus a
sphere on flat geometry is maintained throughout the operation of
this tribometer and simple formulas for elastic solids can be used
for the area of contact and pressure within the contact.  

The approach to tribometry presented here is certainly uncon-
ventional. It is thus desirable to compare the CoFs  obtained with
the SOT (using Eq. [26]) with CoFs obtained by more conven-
tional methods. Such a comparison will be made in the next sec-
tion and, where possible, in subsequent publications.

EXPERIMENTAL CHARACTERIZATION

The experimental system described here was constructed with
rotating and fixed plates 50.8 mm (2 in) diameter, a guide plate
12.7 mm (.5 in) diameter and ball diameters of both 6.35 mm (.25
in) and 12.7 mm (.5 in). The ball’s orbit diameter was about 45.72
mm (1.8 in). The operational environment could be ultrahigh vac-
uum or selected gases at atmospheric pressure, all at room tem-
perature.

Some general observations support the above analysis. The
ball’s orbit is very close to circular, in accord with Eq. [5], a con-
sequence of roll without slip. Also from Eq. [5], the ball’s angular
velocity should be half that of the rotating plate. This was tested
by simply counting both the number of ball orbits and the number
of plate rotations over many orbits. This was maintained at 1:2
over many hundreds, even thousands of orbits, in accord with the
analysis. Eventually, however, the number of ball orbits fell
behind the predicted value so that the ball orbit rate had been
slightly less than half the rate of the rotating plate from the start.
This “velocity deficit” of the ball has been noted and explored
somewhat further in an earlier report (9) on the tribometer’s devel-
opment. It is really a small second order effect that can generally
be ignored in the usual operation of the tribometer as a lubricant
tester. It does, however, play a role on the appearance of the marks
made by the ball on the rotating plate, as explained below.

A micrograph of the scrub region on the fixed plate is shown
in Fig. 5 for a system load of 1.5 GPa. Circular arcs are apparent
in the degraded lubricant. These scars are due to the rotation of the
12.7 mm diameter ball about the k axis while rolling on the guide

Fig. 4—Lateral forces on the ball in the scrub.
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plate, as explained below Eqs. [27]. There are corresponding scars
on the guide plate due to the ball rolling about the j axis while
rolling on the fixed plate. These scars can be regarded as experi-
mental support for the analysis that lead to Eqs. [27a] and [27b].
The track width on the fixed plate is quite close to the Hertz value
of 0.4 mm.

A corresponding scar on the rotating plate is predicted by Eq.
[27c]. Such a scar should appear on only one place on the rotating
plate because, according to the simple theory, the ball should enter
the scrub at the same place on the rotating plate at each orbit.
However, the velocity deficit noted above slightly changes this
place on the rotating plate each successive orbit, so that a series of
circular arc scars eventually is established around the track. This
is the most easily observable consequence of the velocity deficit,
which also has the effect of “spreading out” the scrub region on
the rotating plate so that eventually friction is measured all around
its track. The circular arc scars are not found outside the scrub on
the fixed plate because the pivot value there, Eq. [13b], is too
small for the scars to be observable.

An important result of the analysis is that a lateral force F2 =
Fgp/2 is developed at the fixed plate contact, with the reaction
force pushing the fixed plate away from the guide plate. This was
tested by supporting the fixed plate on rollers, allowing free
motion normal to the guide plate, and constraining its motion by
a second force transducer placed at the asterisk in Fig. 1. Both the
guide plate force Fgp and the lateral force F2 on the fixed plate
were then measured simultaneously. It was found that F2 = Fgp/2
very closely. This important experimental validation of the analy-
sis thus provides confidence in the identification of Fgp/2 with the
friction force F1 and permits the identification of this device as a
“tribometer.”

To obtain the coefficient of friction (CoF) in this tribometer,
the guide plate force obtained by a digital data acquisition system
is divided by 2 to obtain the friction force and by the load to obtain
the CoF. The length of the scrub – the distance in which the ball
is in contact with the guide plate – is obtained from the data acqui-
sition rate and the linear velocity of the ball, Eq. [22]. A typical
“force profile” is shown in Fig. 6. There is a sharp increase in the
friction force, followed by oscillations. An average value of the
friction force, obtained over the indicated interval, is divided by
the load to obtain the CoF. The magnitude of these oscillations
depend on the ball velocity. They are virtually absent for plate
speeds < 60 r/min and become more evident at higher speeds.
However, in spite of these oscillations, the CoF was found to be
independent of speed for many material combinations as long as
the friction force is averaged over an appropriate interval as
shown. The oscillations appear to be due to a dynamic “ringing”
response of the rotating shaft or other parts of the support struc-
ture. They are thus specific to this particular construction and may
not appear in other versions. Their presence is not a severe draw-
back to the operation of this tribometer as long as the averaging is
performed as indicated. A demonstration of this was obtained by
stopping a test in mid-run, replacing a steel washer between the
guide plate and the force transducer with a “soft” o-ring, and
restarting. Oscillations were suppressed, but the same friction
coefficient was obtained from the averaging software for both
steel and o-ring configurations.

A demonstration of this device’s ability to perform as a tri-
bometer is its ability to demonstrate Amonton’s Law, the inde-
pendence of CoF on load. While not all physical systems actually
do obey Amonton’s Law, it has been found that it can be demon-
strated in this tribometer with steel specimens running in the
boundary lubricated regime. Figure 7 shows the results on the CoF
of stepping up the load about every 100 orbits. The independence
of CoF~.11 on load is evidently obeyed well over this load range,
raising confidence in the operation of this device as a tribometer.
Note also the impressive orbit to orbit reproducibility of the CoF.
This demonstrates the effectiveness of the above averaging proce-
dure in dealing with the oscillations in the force profile. Also note
that a value of .11 for the CoF is reasonable for boundary-lubri-
cated steel running in air. Referring here to the points raised at the
end of Section II, this demonstration of Amonton’s Law and the
reasonableness of the CoF is experimental support for the basic
result of the analysis – that the CoF can be obtained from half the
guide plate force divided by the load.

Fig. 5—Micrograph of scrub region on steel fixed plate after ~1000 orbits
under 43 lb. Load.

Fig. 6—Typical force profile.
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The scrub length is also plotted in Fig. 7. Although it increas-
es with load, this increase could just as well be ascribed to the
increase in friction force as the load increases. To determine the
dependence of scrub length on system parameters, the data for
scrub length plotted in Fig. 8 was collected. From this it appears
that the scrub length is determined only by friction force and not
by CoF or load. This plot serves as a characterization of this sys-
tem and shows that the scrub can be accommodated by the 12.7
mm (.5 in) diameter guide plate for a wide range of conditions, a
characteristic that imparts important generality to this tribometer.
The spiral itself, as well as the scrub, can be characterized for this
system. The spiral’s pitch, h (growth of the spiral’s radius per
orbit), can be obtained from the scrub length via Fig. 3 as

h = 2πRo

√
x2+1−1

2π−atan(x) [28]

where Ro is the spiral’s initial radius and x = scrub length / Ro. The
data from Fig. 8 is used to plot the spiral’s pitch in Fig. 9. The
pitch is less than 1 mm for the conditions explored, which further
characterizes this tribometer.                          

This section is concluded by considering the closely related
earlier work of Johnson (1). His analysis of the contact conditions

of this kind of thrust bearing lead him to propose that the spiral’s
pitch (he calls it creep) is proportional to the radius of the circle of
elastic contact (Hertz radius). This proposal was tested for the
present arrangement by plotting in Fig. 10 the pitch for the data set
associated with Fig. 7 vs. the Hertz radius. A straight line has been
placed through the data points and the fit to linearity is observed
to be fairly good. However, this linear fit does not extrapolate to
the origin. Instead, for Hertz radii <.06 mm (<1 lb. load), the
extrapolation implies negative values for the spiral’s pitch. Such
inward-going spirals have never been observed. Johnson’s experi-
mentally observed pitches did extrapolate to the origin. Thus,
although the value of the pitch is roughly the same in both studies,
the data presented here are not in full accord with Johnson’s
results. The reason for the lack of full accord may be that some
aspects of the present system do not conform to the conditions met
in Johnson’s work. In particular, the use of one ball instead of
Johnson’s three symmetrically spaced balls may introduce an
asymmetry not accounted for in the analysis. Although the present
system was constructed as a tribometer to test lubricants and not
as a means to test theories of the spiral, such theories provide
insight to the slip conditions in the contact where the lubricant is
degraded. Understanding these slip conditions may lead to better

Fig. 7—The effect of varying load on CoF and scrub length for a bound-
ary lubricated system running in air.

Fig. 8—Scrub length vs. friction force for different conditions. D is the
ball diameter (mm).

Fig. 9—The spiral pitch vs. friction force for different conditions.

Fig. 10—Spiral pitch vs. Hertz radius.
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understanding the details of boundary lubrication and tribochemi-
cal degradation of lubricants.

CONCLUSIONS

A new rolling contact tribometer based on a planar thrust bear-
ing geometry has been described. It is a tribometer by virtue of its
ability to measure a coefficient of friction. Except possibly in the
region of the scrub, the first order kinematics of the instrument are
well understood and are directly related to those of angular con-
tact ball bearings. The flat race geometry lends itself to easy post-
test examination of the tracks established by the passage of the
ball. The open geometry of the instrument can accommodate in-
situ analytic probes to investigate changes in surface chemistry.
The lack of significant specimen wear allows the use of simple
equations of sphere on flat geometry for pressure and contact area.
The instrument has been operated in both ultrahigh vacuum and
ambient pressure environments.

The analysis of the contact identified two loci of slip: the first
is the slip within the elastic region of contact due to pivot - the rel-
ative angular velocity normal to the ball’s plane of contact as it
rolls on the plates. This type of slip is present in angular contact
ball bearings and provides the most direct correspondence of this
simpler system’s kinematics with those of the typical ball bearing.
The other type of slip, gross sliding, occurs between the ball and
the rotating plate when the ball is in contact with the guide plate.
It may be likened to the sliding of a ball against the pocket of a
retainer in the usual ball bearing. The guide plate in this system
may also be considered a retainer of sorts in that it keeps the ball
from falling out of the system. The frictional energy loss that
occurs in both regions of slip may be considered a driving agent
for the degradation of organic lubricants within the contact.

This device, the SOT, simplifies a ball bearing down to irre-
ducible elements – a single ball under load rolling on flat plates –
and yet it manifestly is a ball bearing. As such, the results obtained
with it on lubricant behavior should be directly applicable to the
lubricant when used in the usual angular contact ball bearing. A
following paper (Part II) reports the results of a study of the rela-
tive tribo-degradation rate of liquid lubricants in ultrahigh vacuum
using the spiral orbit tribometer. Subsequent papers will report on
using this technique to study friction polymer generation and solid
film lubricants.
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